
CS 4530: Fundamentals of Software Engineering

Module 06: Concurrency Patterns in Typescript

Adeel Bhutta, Mitch Wand

Khoury College of Computer Sciences

1

© 2023,-2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

• At the end of this lesson, you should be
prepared to:
• Explain the difference between JS run-to-

completion semantics and interrupt-based
semantics.

• Given a simple program using async/await,
work out the order in which the statements
in the program will run.

• Write simple programs that create and
manage promises using async/await

• Write simple programs to mask latency with
concurrency by using non-blocking IO and
Promise.all in TypeScript.

2

Your app probably spends most of its time
waiting
• Consider: a 1Ghz CPU executes

an instruction every 1 ns

• Almost anything else takes
approximately forever

• Want to utilize this “wasted”
time by doing something else
• Processing data
• Communicating with remote hosts
• Timers that countdown while our app is

running
• Echoing user input

3

CPU 1

thread0() Main

Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer

(Internet in between)

~100,000,000ns
Earth to moon: ~16,000,000 inches

4

We achieve this goal using two
techniques:

1. cooperative multiprocessing

2. non-blocking IO

Most OS's use pre-emptive multiprocessing

• OS manages multiprocessing with multiple threads of
execution

• Processes may be interrupted at unpredictable times

• Inter-process communication by shared memory

• Data races abound

• Really, really hard to get right: need critical sections,
semaphores, monitors (all that stuff you learned about in
op. sys.)

Javascript/Typescript uses cooperative
multiprocessing

• Typescript maintains a pool of processes, called
promises.

• A promise always executes until it reaches its end
(i.e., a promise cannot be interrupted).

• This is called "run-to-completion semantics".

• A promise can create other promises to be added to
the pool.

• Promises interact mostly by passing values to one
another; data races are minimized.

A promise can be in one of exactly 3 states

7

• A JavaScript promise can be in one of three

states: pending, fulfilled, or rejected.

• Pending is the initial state where the promise is

waiting for an operation to complete;

• Resolved: either fulfilled or rejected.

• fulfilled means the operation was successful,

• rejected indicates that the operation failed.

Subcategories of Pending Promises

• Waiting: pending, and some of the operations it

was waiting for have not yet completed

• Ready for Execution: pending, but all the

operations it was waiting for have completed

• Executing: pending (not resolved), but the code

of the promise is currently being executed

• There can be at most one executing promise at

any time

8

A snapshot of the promise pool

9

p101 p51

p27

p26

p25p50p100

p102

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting.

The white promise is the
currently executing promise

The arrows indicate that one promise is waiting for
another

When the currently executing promise
succeeds, the pool will look like this:

10

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting

The white promise is the
currently executing promise

The currently executing promise may have created
some new promises, not shown here. Some of
them might be ready, too.

The arrows indicate that one promise is waiting for
another

p101 p51

p27

p26

p25p50p100

p102

Any ready promise can be chosen as the
next promise to be executed

11

The grey promises are fulfilled

The green promises are
pending and ready

The yellow promises are
waiting

The white promise is the
currently executing promise

The arrows indicate that one promise is waiting for
another

p101 p51

p27

p26

p25p50p100

p102

Computations always run until they are
completed.
• Execution of a promise cannot be interrupted.

That's what we mean by "run to completion".

• Along the way, it may create promises that can be
run anytime after the current computation is
completed (i.e. they will be in the "waiting" state).
• We'll see that async/await provides an easy way

to do that.

• A computation is completed when it returns from a
procedure, but there are no procedures for it to
return to (i.e. it returns to the "top level")

• When the current computation is completed, the
operating system (e.g. node.js) chooses some
"ready" promise to become the next current
computation.

Programming with promises

13

• Typescript has primitives that create
promises.

• But you will never do this

• Some typescript libraries have API
procedures that return promises

• this is the usual way you'll get
promises.

• Most of the time, you'll be building new
promises out of the ones that are given
to you.

• This is what async/await does…

Use async functions to create promises

• Typically, an async function gets a promise
(from somewhere) and returns another
promise.

14

Example:

15

/** given a string, returns a promise that prints a string
* and then resolves.

**/
import promiseToPrint from "./promiseToPrint";

export async function example1(n: number): Promise<void> {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`example1(${n}) is printing`);
await p1;
console.log(`example1(${n}) finishing`);

}

src/async-await/example1.ts

async/await: from
the inside out

1. This function executes normally until it hits the await,
printing out "example1(1) starting" and binding p1 to the
value of promiseToPrint('p1 is printing')

2. When it hits the await, it takes all the code following the
await and creates a new promise that can only be executed
after p1 is completed.

3. The new promise becomes the value of example(n).

4. The caller of example(n) then continues its execution.

5. If example(n) has no caller, then the runtime system
chooses some ready promise to execute.

16

export async function example1(n: number): Promise<void> {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`p1 is printing`);
await p1;
console.log(`example1(${n}) finishing`);

}

The promise pool before before calling
example1()

17

{
const res =
example1(10);
//..more code..
}

The promise pool after calling example1()

18

{
const res =
//..more code..
}

console.log(
`example1(10) finishing`
);

Important:
The console.log can't run until
after the 'more code' finishes

example1(10) starting
p1 is printing

Async functions: from the outside in

• What can async functions do?

• What are the typical patterns for applying
them?

19

Async functions return promises

$ npx ts-node AsyncReturnsPromise.ts

starting main

example1(10) starting

p1 is printing

example1(10) returned Promise { <pending> }

main finished

example1(10) finishing

20

src/async-await/AsyncReturnsPromise.ts

export async function example1(n: number) {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`p1 is printing`);
await p1;
console.log(`example1(${n}) finishing`);

}

function main1() {
console.log('starting main');
const res = example1(10)
console.log ('example1(10) returned', res)
console.log('main finished');

}

main1();

Asyncs can be nested

21

export async function example2(n: number):
Promise<void> {
console.log(`example2(${n}) starting`);
const p1 = example1(n);
await p1;
console.log(`example2(${n}) finishing`);

}

function main() {
console.log('starting main');
example2(10)
console.log('main finished');

}

main();

src/async-await/nestedAsyncs.ts

$ npx ts-node nestedAsyncs.ts

starting main

example2(10) starting

example1(10) starting

p1 is printing

main finished

example1(10) finishing

example2(10) finishing

Running Multiple Promises Asynchronously

22

export async function example1(n: number) {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`p1 is printing`);
await p1;
console.log(`example1(${n}) finishing`);

}

function make3AsynchronousPromises() {
console.log('starting make3AsynchronousPromises');
example1(100);
example1(200);
example1(300);
console.log('make3AsynchronousPromises finished');

}

make3AsynchronousPromises()

$ npx ts-node ThreeAsynchronousPromises.ts
starting make3AsynchronousPromises
example1(100) starting
p1 is printing
example1(200) starting
p1 is printing
example1(300) starting
p1 is printing
make3AsynchronousPromises finished
example1(100) finishing
example1(200) finishing
example1(300) finishing

src/async-await/ThreeAsynchronousPromises.ts

Running Multiple Promises Sequentially

23

export async function example1(n: number): {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`p1 is printing`);
await p1;
console.log(`example1(${n}) finishing`);

}

async function make3SequentialPromises() {
console.log('starting make3SequentialPromises');
await example1(100);
await example1(200);
await example1(300);
console.log('make3SequentialPromises finished');

}

make3SequentialPromises()

$ npx ts-node ThreeSequentialPromises.ts
starting make3SequentialPromises
example1(100) starting
p1 is printing
example1(100) finishing
example1(200) starting
p1 is printing
example1(200) finishing
example1(300) starting
p1 is printing
example1(300) finishing
make3SequentialPromises finished

src/async-await/ThreeSequentialPromises.ts

Promises can pass values to one another

24

export async function example1(n: number) {
console.log(`example1(${n}) starting`);
const p1 = promiseToPrint(`p1 is printing`);
await p1;
console.log(`example1(${n}) finishing`);
// pass this to any waiting promises
// this is NOT the value of the async function
return n+10;

}

async function promisesPassingValues() {
console.log('starting promisesPassingValues');
const res1 = await example1(100);
const res2 = await example1(res1);
const res3 = await example1(res2);
console.log(`res3 = ${res3}`);
console.log('promisesPassingValues finished');

}

$ npx ts-node PromisesPassingValues.ts
starting promisesPassingValues
example1(100) starting
p1 is printing
example1(100) finishing
example1(110) starting
p1 is printing
example1(110) finishing
example1(120) starting
p1 is printing
example1(120) finishing
res3 = 130
promisesPassingValues finished

src/async-await/PromisesPassingValues.ts

Recover from failure with try/catch

25

// promise to fail if shouldFail is true
import { promiseMaybeFail } from './promiseMaybeFail'

async function script(shouldFail:boolean) {
console.log('starting script with shouldFail = ', shouldFail);
try {

await promiseMaybeFail(shouldFail)
console.log('promise succeeded');

}
catch (e) { console.log('promise failed, but error caught') }
console.log('script finished successfully');

}

async function main1() {
await script(false);
console.log('\n')
await script(true)

}

main1()

$ npx ts-node recoveringFromPromiseFailure.ts
starting script with shouldFail = false
promise succeeded
script finished successfully

starting script with shouldFail = true
promise failed, but error caught
script finished successfully

src/async-await/recoveringFromPromiseFailure.ts

How does JS Engine make this happen?

26

• One Event Loop
means that we have
single thread of
execution

• WebAPI are used for
asynchronous tasks

• Queues are used for
“await”-ing tasks

• When call stack gets
empty, event loop
picks up tasks from
Callback Queue

27

We achieve this goal using two
techniques:

1. cooperative multiprocessing

2. non-blocking IO

But where does the non-blocking IO come
from?

Answer: JS/TS has some primitives for
starting a non-blocking computation
• These are things like http requests, I/O operations,

or timers.

• Each of these returns a promise that you can await.
The promise runs while it is pending, and produces
the response from the http request, or the contents
of the file, etc.

• You will hardly ever call one of these primitives
yourself; usually they are wrapped in a convenient
procedure, e.g., we write

axios.get('https://rest-example.covey.town’)

to make an http request, or

fs.readFile(filename)

to read the contents of a file.

28

Pattern for starting a concurrent
computation using non-blocking I/O

1. The first console.log is printed

2. The http request is sent, using non-blocking i/o

3. A promise is created to run the second console.log after the
axios.get returns

4. The makeRequest() returns to its caller.

29

export async function makeRequest(requestNumber:number) {
console.log(`starting makeRequest(${requestNumber})`);
const response = await axios.get('https://rest-example.covey.town');
console.log('request:', requestNumber, '\nresponse:', response.data);

}

import axios from 'axios';

export async function makeRequest(requestNumber:number) {
console.log(`starting makeRequest(${requestNumber})`);
const response = await axios.get('https://rest-example.covey.town');
console.log(`request:${requestNumber} returned`);

}

function make3ConcurrentRequests() {
console.log('starting make3ConcurrentRequests');
makeRequest(100);
makeRequest(200);
makeRequest(300);
console.log('make3ConcurrentRequests finished');

}

make3ConcurrentRequests()

Running 3 concurrent requests

30

$ npx ts-node makeThreeConcurrentRequests.ts
starting make3ConcurrentRequests
starting makeRequest(100)
starting makeRequest(200)
starting makeRequest(300)
make3ConcurrentRequests finished
request 300 returned
request 100 returned
request 200 returned

src/async-await/makeThreeConcurrentRequests.ts

Promise.all takes a list of promises, runs them
concurrently, and succeeds only when they have
all succeeded.

31

export async function makeRequest(requestNumber:number) {
console.log(`starting makeRequest(${requestNumber})`);
await axios.get('https://rest-example.covey.town');
console.log(`request ${requestNumber} returned`);
return requestNumber

}

async function manyConcurrentRequests(requests: number[]) {
console.log('starting manyConcurrentRequests');
const responses = await Promise.all(requests.map(n => makeRequest(n)));
console.log('responses:', responses);
console.log('manyConcurrentRequests finished');

}

async function main() {
manyConcurrentRequests([100,200,300,400])

}

main()

$ npx ts-node manyConurrentRequests.ts
starting manyConcurrentRequests
starting makeRequest(100)
starting makeRequest(200)
starting makeRequest(300)
starting makeRequest(400)
request 100 returned
request 300 returned
request 200 returned
request 400 returned
responses: [100, 200, 300, 400]
manyConcurrentRequests finished

src/async-await/manyConcurrentRequests.ts

If you add awaits, the requests will be
processed sequentially

32

async function make3SequentialRequests() {
console.log('starting make3SequentialRequests');
await makeRequest(100);
await makeRequest(200);
await makeRequest(300);
console.log('make3SequentialRequests finished');

}

$ npx ts-node
makeThreeSequentialRequests.ts
starting make3SequentialRequests
starting makeRequest(100)
request 100 returned
starting makeRequest(200)
request 200 returned
starting makeRequest(300)
request 300 returned
make3SequentialRequests finished

…but it would be much slower

33

$ npx ts-node timeComparison.ts
After 100 runs of length 10
makeRequestsConcurrently: min = 23 avg = 34 max = 190 milliseconds
makeRequestsSerially : min = 210 avg = 237 max = 812 milliseconds

Why is that?
Visualizing Promise.all

34

send receivewait

send receivewait

send receivewait

send receivewait send receivewait send receivewait

Sequential (await)

Concurrent (Promise.all)

“Don’t make another request
until you got the last response

back”

“Make all of the requests now,
then wait for all of the

responses”

237 msec

34 msec

Let’s put it all together

35

• JS/TS has single event loop

• We outsource most of the
non-blocking IO work (to
WebAPIs) for asynchronous
work

• Upon completion, they are
placed in queues (Microtask
queue has priority over
Macrotask queue)

• Event loop picks them up
from queue when call stack
is empty!

Here is a quick demo for you

36

Courtesy of https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

Pattern for testing an async function

37

import axios from 'axios'

async function echo(str: string) : Promise<string> {
const res =

await axios.get(`https://httpbin.org/get?answer=${str}`)
return res.data.args.answer

}

test('request should return its argument', async () => {
expect.assertions(1)
await expect(echo("33")).resolves.toEqual("33")

})

src/jest/jest-example.test.ts

General Rules for Writing Asynchronous
Code

• You can’t return a value from a promise to an ordinary
procedure.
• You can only send the value to another promise that is

awaiting it.

• Call async procedures only from other async functions or from
the top level.

• Break up any long-running computation into async/await
segments so other processes will have a chance to run.

• Leverage concurrency when possible
• Use promise.all if you need to wait for multiple promises to

return.

• Check for errors with try/catch

An Example Task Using the Transcript Server

• Given an array of StudentIDs:

• Request each student’s transcript, and save it to disk so that
we have a copy, and calculate its size

• Once all of the pages are downloaded and saved, print out the
total size of all of the files that were saved

Generating a promise for each student

40

async function asyncGetStudentData(studentID: number) {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return returnValue
}

async function asyncProcessStudent(studentID: number) : Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
// asynchronously write the file
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size : number = stats.size
return size

}

Calling await also gives other

processes a chance to run.

src/transcripts/simple.ts

Running the student processes concurrently

41

async function runClientAsync(studentIDs:number[]) {
console.log(`Generating Promises for ${studentIDs}`);
const studentPromises =
studentIDs.map(studentID => asyncProcessStudent(studentID)) ;

console.log('Promises Created!');
console.log('Satisfying Promises Concurrently')
const sizes = await Promise.all(studentPromises);
console.log(sizes)
const totalSize = sum(sizes)
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}

Map-promises pattern: take a list of

elements and generate a list of

promises, one per element

src/transcripts/simple.ts

Output

42

$ npx ts-node simple.ts
Generating Promises for 411,412,423
Promises Created!
Satisfying Promises Concurrently
[151, 92, 145]
Finished calculating size: 388
Done

runClientAsync([411,412,423])

But what if there’s an error?

43

runClientAsync([411,412,87065,423,23044])

Oops!
$ npx ts-node transcripts/simple.ts
Generating Promises for 411,412,87065,423,23044
Promises Created!
Satisfying Promises Concurrently

<blah blah
blah>\node_modules\axios\lib\core\createError.js
:16
var error = new Error(message);

^
Error: Request failed with status code 404

Need to catch the error

44

type StudentData = {isOK: boolean, id: number, payload?: any }

/** asynchronously retrieves student data, */
async function asyncGetStudentData(studentID: number): Promise<StudentData> {

try {
const returnValue =
await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)

return { isOK: true, id: studentID, payload: returnValue }
} catch (e) {

return { isOK: false, id: studentID }
}

}
Catch the error and transmit it in a

form the rest of the caller can

handle.

src/transcripts/handle-errors.ts

And recover from the error…

45

async function asyncProcessStudent(studentID: number): Promise<number> {
// wait to get the student data
const response = await asyncGetStudentData(studentID)
if (!(response.isOK)) {

console.error(`bad student ID ${studentID}`)
return 0

} else {
await fsPromises.writeFile(

dataFileName(studentID),
JSON.stringify(response.payload.data))

// last, extract its size
const stats = await fsPromises.stat(dataFileName(studentID))
const size: number = stats.size
return size

}
}

Design decision: if we have a bad

student ID, we’ll print out an error

message, and count that as 0

towards the total.

src/transcripts/handle-errors.ts

New output

46

runClientAsync([411,32789,412,423,10202040])

$ npx ts-node transcripts/handle-errors.ts
Generating Promises for
411,32789,412,423,10202040
Promises Created!
Wait for all promises to be satisfied
bad student ID 32789
bad student ID 10202040
[151, 0, 92, 145, 0]
Finished calculating size: 388
Done

Odds and Ends You Should Know About

47

This is not Java!

• In Java, you could get an
interrupt between
statement 2 and
statement 3.

• In TS/JS statement 3 is
guaranteed to be
executed *immediately*
after statement 2!

• No interrupt is possible.

48

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
// nothing can happen between these two statements!!
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

src/data-races/dataRace.ts

But you can still have a data race

49

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

src/data-races/dataRace.ts

Async/await code is compiled into
promise/then code

async function

makeThreeSerialRequests(){

1. console.log('Making first

request’);

2. await makeOneGetRequest();

3. console.log('Making second

request’);

4. await makeOneGetRequest();

5. console.log('Making third

request’);

6. await makeOneGetRequest();

7. console.log('All done!');

}

makeThreeSerialRequests();

console.log('Making first request');

makeOneGetRequest().then(() =>{

console.log('Making second request');

return makeOneGetRequest();

}).then(() => {

console.log('Making third request');

return makeOneGetRequest();

}).then(()=>{

console.log('All done!');

});

Promises Enforce Ordering Through “Then”

• axios.get returns a
promise.

• p.then mutates that
promise so that the then
block is run immediately
after the original promise
returns.

• The resulting promise
isn’t completed until the
then block finishes.

• You can chain .then’s, to
get things that look like
p.then().then().then()

1. console.log('Making requests');

2. axios.get('https://rest-example.covey.town/')

 .then((response) =>{

 console.log('Heard back from server');

 console.log(response.data);

});

3. axios.get('https://www.google.com/')

 .then((response) =>{

 console.log('Heard back from Google');

 });

4. axios.get('https://www.facebook.com/')

 .then((response) =>{

 console.log('Heard back from Facebook');

 });

5. console.log('Requests sent!');

The Self-Ticking Clock

• To make the clock self-ticking, add the following
line to your clock:

52

constructor () {
setInterval(() => {this.tick()},50)

}

Async/Await Programming Activity

Download the activity (includes instructions in README.md):
Linked from course webpage for Module 6

Review

• You should now be prepared to:

• Explain the difference between JS run-to-
completion semantics and interrupt-based
semantics.

• Given a simple program using async/await, work
out the order in which the statements in the
program will run.

• Write simple programs that create and manage
promises using async/await

• Write simple programs to mask latency with
concurrency by using non-blocking IO and
Promise.all in TypeScript.

54

	Module 06 Concurrency Patterns in Typescript
	CS 4530: Fundamentals of Software Engineering��Module 06: Concurrency Patterns in Typescript
	Learning Goals for this Lesson
	Your app probably spends most of its time waiting
	We achieve this goal using two techniques:� �1. cooperative multiprocessing � �2. non-blocking IO
	Most OS's use pre-emptive multiprocessing
	Javascript/Typescript uses cooperative multiprocessing
	A promise can be in one of exactly 3 states
	Subcategories of Pending Promises
	A snapshot of the promise pool
	When the currently executing promise succeeds, the pool will look like this:
	Any ready promise can be chosen as the next promise to be executed
	Computations always run until they are completed.
	Programming with promises
	Use async functions to create promises
	Example:
	async/await: from the inside out
	The promise pool before before calling example1()
	The promise pool after calling example1()
	Async functions: from the outside in
	Async functions return promises
	Asyncs can be nested
	Running Multiple Promises Asynchronously
	Running Multiple Promises Sequentially
	Promises can pass values to one another
	Recover from failure with try/catch
	How does JS Engine make this happen?
	We achieve this goal using two techniques:� �1. cooperative multiprocessing � �2. non-blocking IO
	Answer: JS/TS has some primitives for starting a non-blocking computation
	Pattern for starting a concurrent computation using non-blocking I/O
	Running 3 concurrent requests
	Promise.all takes a list of promises, runs them concurrently, and succeeds only when they have all succeeded.
	If you add awaits, the requests will be processed sequentially
	…but it would be much slower
	Why is that? �Visualizing Promise.all
	Let’s put it all together
	Here is a quick demo for you
	Pattern for testing an async function
	General Rules for Writing Asynchronous Code
	An Example Task Using the Transcript Server
	Generating a promise for each student
	Running the student processes concurrently
	Output
	But what if there’s an error?
	Need to catch the error
	And recover from the error…
	New output
	Odds and Ends You Should Know About
	This is not Java!
	But you can still have a data race
	Async/await code is compiled into promise/then code
	Promises Enforce Ordering Through “Then”
	The Self-Ticking Clock
	Async/Await Programming Activity
	Review

